Need help? We're here to assist you!

Book For Free Trial Of Study App & Counselling

Thank You for Enquiry, we will contact you soon!

Close
Home Revise
☰
Home Revise
✖
  • HOME
  • DEMO VIDEOS
  • BOOK A FREE COUNSELLING
  • +91 8080972972
Home Revise
  • HOME
  • DEMO VIDEOS
  • BOOK A FREE COUNSELLING
  • +91 8080972972

NCERT Solutions for Class 8 Maths Chapter 7 – Cubes and Cube Roots

Home Revise – NCERT Solutions for Class 8 Maths Chapter 7 – Cubes and Cube Roots

The Class 8 is an important year in a student’s life and Maths is one of the subjects that require dedication, hard work, and practice. It’s a subject where you can score well if you are well-versed with the concepts, remember the important formulas and solving methods, and have done an ample amount of practice. Worry not! Home Revise is here to make your Class 8 journey even easier. It’s essential for students to have the right study material and notes to prepare for their board examinations, and through Home Revise, you can cover all the fundamental topics in the subject and the complete NCERT Class 8 Maths Book syllabus.

NCERT Solutions for Class 10 Science CBSE

Access Answers of Maths NCERT Class 8 Chapter 7 – Cubes and Cube Roots

Exercise 7.1 Page: 114

1. Which of the following numbers are not perfect cubes?

(i) 216

Solution:

By resolving 216 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 1

216 = 2×2×2×3×3×3

By grouping the factors in triplets of equal factors, 216 = (2×2×2)×(3×3×3)

Here, 216 can be grouped into triplets of equal factors,

∴ 216 = (2×3) = 6

Hence, 216 is the cube of 6.

(ii) 128

Solution:

By resolving 128 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 2

128 = 2×2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 128 = (2×2×2)×(2×2×2)×2

Here, 128 cannot be grouped into triplets of equal factors, and we are left with one factor: 2.

∴ 128 is not a perfect cube.

(iii) 1000

Solution:

By resolving 1000 into prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 3

1000 = 2×2×2×5×5×5

By grouping the factors in triplets of equal factors, 1000 = (2×2×2)×(5×5×5)

Here, 1000 can be grouped into triplets of equal factors.

∴ 1000 = (2×5) = 10

Hence, 1000 is the cube of 10.

(iv) 100

Solution:

By resolving 100 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 4

100 = 2×2×5×5

Here, 100 cannot be grouped into triplets of equal factors.

∴ 100 is not a perfect cube.

(v) 46656

Solution:

By resolving 46656 into prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 5

46656 = 2×2×2×2×2×2×3×3×3×3×3×3

By grouping the factors in triplets of equal factors, 46656 = (2×2×2)×(2×2×2)×(3×3×3)×(3×3×3)

Here, 46656 can be grouped into triplets of equal factors,

∴ 46656 = (2×2×3×3) = 36

Hence, 46656 is the cube of 36.

2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.

(i) 243

Solution:

By resolving 243 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 6

243 = 3×3×3×3×3

By grouping the factors in triplets of equal factors, 243 = (3×3×3)×3×3

Here, 3 cannot be grouped into triplets of equal factors.

∴ We will multiply 243 by 3 to get the perfect cube.

(ii) 256

Solution:

By resolving 256 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 7

256 = 2×2×2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 256 = (2×2×2)×(2×2×2)×2×2

Here, 2 cannot be grouped into triplets of equal factors.

∴ We will multiply 256 by 2 to get the perfect cube.

(iii) 72

Solution:

By resolving 72 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 8

72 = 2×2×2×3×3

By grouping the factors in triplets of equal factors, 72 = (2×2×2)×3×3

Here, 3 cannot be grouped into triplets of equal factors.

∴ We will multiply 72 by 3 to get the perfect cube.

(iv) 675

Solution:

By resolving 675 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 9

675 = 3×3×3×5×5

By grouping the factors in triplets of equal factors, 675 = (3×3×3)×5×5

Here, 5 cannot be grouped into triplets of equal factors.

∴ We will multiply 675 by 5 to get the perfect cube.

(v) 100

Solution:

By resolving 100 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 10

100 = 2×2×5×5

Here, 2 and 5 cannot be grouped into triplets of equal factors.

∴ We will multiply 100 by (2×5) 10 to get the perfect cube.

3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81

Solution:

By resolving 81 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 11

81 = 3×3×3×3

By grouping the factors in triplets of equal factors, 81 = (3×3×3)×3

Here, 3 cannot be grouped into triplets of equal factors.

∴ We will divide 81 by 3 to get the perfect cube.

(ii) 128

Solution:

By resolving 128 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 12

128 = 2×2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 128 = (2×2×2)×(2×2×2)×2

Here, 2 cannot be grouped into triplets of equal factors.

∴ We will divide 128 by 2 to get the perfect cube.

(iii) 135

Solution:

By resolving 135 into prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 13

135 = 3×3×3×5

By grouping the factors in triplets of equal factors, 135 = (3×3×3)×5

Here, 5 cannot be grouped into triplets of equal factors.

∴ We will divide 135 by 5 to get the perfect cube.

(iv) 192

Solution:

By resolving 192 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 14

192 = 2×2×2×2×2×2×3

By grouping the factors in triplets of equal factors, 192 = (2×2×2)×(2×2×2)×3

Here, 3 cannot be grouped into triplets of equal factors.

∴ We will divide 192 by 3 to get the perfect cube.

(v) 704

Solution:

By resolving 704 into a prime factor,

NCERT Solution For Class 8 Maths Chapter 7 Image 15

704 = 2×2×2×2×2×2×11

By grouping the factors in triplets of equal factors, 704 = (2×2×2)×(2×2×2)×11

Here, 11 cannot be grouped into triplets of equal factors.

∴ We will divide 704 by 11 to get the perfect cube.

4. Parikshit makes a cuboid of plasticine with sides 5 cm, 2 cm, and 5 cm. How many such cuboids will he need to form a cube?

Solution:

Given the sides of the cube are 5 cm, 2 cm and 5 cm.

∴ Volume of cube = 5×2×5 = 50

NCERT Solution For Class 8 Maths Chapter 7 Image 16

50 = 2×5×5

Here, 2 , 5 and 5 cannot be grouped into triplets of equal factors.

∴ We will multiply 50 by (2×2×5) 20 to get the perfect cube. Hence, 20 cuboids are needed.


Exercise 7.2 Page: 116

1. Find the cube root of each of the following numbers by the prime factorisation method.

(i) 64

Solution:

64 = 2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 64 = (2×2×2)×(2×2×2)

Here, 64 can be grouped into triplets of equal factors.

∴ 64 = 2×2 = 4

Hence, 4 is the cube root of 64.

(ii) 512

Solution:

512 = 2×2×2×2×2×2×2×2×2

By grouping the factors in triplets of equal factors, 512 = (2×2×2)×(2×2×2)×(2×2×2)

Here, 512 can be grouped into triplets of equal factors.

∴ 512 = 2×2×2 = 8

Hence, 8 is the cube root of 512.

(iii) 10648

Solution:

10648 = 2×2×2×11×11×11

By grouping the factors in triplets of equal factors, 10648 = (2×2×2)×(11×11×11)

Here, 10648 can be grouped into triplets of equal factors.

∴ 10648 = 2 ×11 = 22

Hence, 22 is the cube root of 10648.

(iv) 27000

Solution:

27000 = 2×2×2×3×3×3×3×5×5×5

By grouping the factors in triplets of equal factors, 27000 = (2×2×2)×(3×3×3)×(5×5×5)

Here, 27000 can be grouped into triplets of equal factors.

∴ 27000 = (2×3×5) = 30

Hence, 30 is the cube root of 27000.

(v) 15625

Solution:

15625 = 5×5×5×5×5×5

By grouping the factors in triplets of equal factors, 15625 = (5×5×5)×(5×5×5)

Here, 15625 can be grouped into triplets of equal factors.

∴ 15625 = (5×5) = 25

Hence, 25 is the cube root of 15625.

(vi) 13824

Solution:

13824 = 2×2×2×2×2×2×2×2×2×3×3×3

By grouping the factors in triplets of equal factors,

13824 = (2×2×2)×(2×2×2)×(2×2×2)×(3×3×3)

Here, 13824 can be grouped into triplets of equal factors.

∴ 13824 = (2×2× 2×3) = 24

Hence, 24 is the cube root of 13824.

(vii) 110592

Solution:

110592 = 2×2×2×2×2×2×2×2×2×2×2×2×3×3×3

By grouping the factors in triplets of equal factors,

110592 = (2×2×2)×(2×2×2)×(2×2×2)×(2×2×2)×(3×3×3)

Here, 110592 can be grouped into triplets of equal factors.

∴ 110592 = (2×2×2×2 × 3) = 48

Hence, 48 is the cube root of 110592.

(viii) 46656

Solution:

46656 = 2×2×2×2×2×2×3×3×3×3×3×3

By grouping the factors in triplets of equal factors,

46656 = (2×2×2)×(2×2×2)×(3×3×3)×(3×3×3)

Here, 46656 can be grouped into triplets of equal factors.

∴ 46656 = (2×2×3×3) = 36

Hence, 36 is the cube root of 46656.

(ix) 175616

Solution:

175616 = 2×2×2×2×2×2×2×2×2×7×7×7

By grouping the factors in triplets of equal factors,

175616 = (2×2×2)×(2×2×2)×(2×2×2)×(7×7×7)

Here, 175616 can be grouped into triplets of equal factors.

∴ 175616 = (2×2×2×7) = 56

Hence, 56 is the cube root of 175616.

(x) 91125

Solution:

91125 = 3×3×3×3×3×3×3×5×5×5

By grouping the factors in triplets of equal factors, 91125 = (3×3×3)×(3×3×3)×(5×5×5)

Here, 91125 can be grouped into triplets of equal factors.

∴ 91125 = (3×3×5) = 45

Hence, 45 is the cube root of 91125.

2. State true or false.

(i) Cube of any odd number is even.

Solution:

False

(ii) A perfect cube does not end with two zeros.

Solution:

True

(iii) If the cube of a number ends with 5, then its cube ends with 25.

Solution:

False

(iv) There is no perfect cube which ends with 8.

Solution:

False

(v) The cube of a two-digit number may be a three-digit number.

Solution:

False

(vi) The cube of a two-digit number may have seven or more digits.

Solution:

False

(vii) The cube of a single-digit number may be a single-digit number.

Solution:

True

3. You are told that 1,331 is a perfect cube. Can you guess without factorisation what its cube root is? Similarly, guess the cube roots of 4913, 12167, and 32768.

Solution:

(i) By grouping the digits, we get 1 and 331

We know that since the unit digit of the cube is 1, the unit digit of the cube root is 1.

∴ We get 1 as the unit digit of the cube root of 1331.

The cube of 1 matches the number of the second group.

∴ The ten’s digit of our cube root is taken as the unit place of the smallest number.

We know that the unit’s digit of the cube of a number having digit as unit’s place 1 is 1.

∴ ∛1331 = 11

(ii) By grouping the digits, we get 4 and 913

We know that since the unit digit of the cube is 3, the unit digit of the cube root is 7.

∴ we get 7 as the unit digit of the cube root of 4913. We know 13 = 1 and 23 = 8 , 1 >4 >8

Thus, 1 is taken as the tens digit of the cube root.

∴ ∛4913 = 17

(iii) By grouping the digits, we get 12 and 167.

We know that since the unit digit of the cube is 7, the unit digit of the cube root is 3.

∴ 3 is the unit digit of the cube root of 12167 We know 23 = 8 and 33 = 27 , 8 >12 >27

Thus, 2 is taken as the tens digit of the cube root.

∴ ∛12167= 23

(iv) By grouping the digits, we get 32 and 768.

We know that since the unit digit of the cube is 8, the unit digit of the cube root is 2.

∴ 2 is the unit digit of the cube root of 32768. We know 33 = 27 and 43 = 64 , 27 >32 >64

Thus, 3 is taken as the tens digit of the cube root.

∴ ∛32768= 32


  • Numbers like 1729, 4104, and 13832 are known as Hardy–Ramanujan Numbers. They can be expressed as the sum of two cubes in two different ways.
  • Numbers obtained when a number is multiplied by itself three times are known as cube numbers.
  • If, in the prime factorisation of any number, each factor appears three times, then the number is a perfect cube.

The seventh chapter of Class 8 Maths helps the students in finding the cubes and cube roots of different numbers, understanding the difference between cubes and cube roots, and also to have fun with some interesting patterns. The chapter also lets the students understand the process of finding out the cubes and cube roots of a number using the prime factorisation method. Moreover, the chapter also explains the method of finding the cube root of a cube number. Learning the chapter “Cubes and Cube Roots” enables the students to:

  • Find out the Cubes and cubes roots for numbers containing at most 3 digits
  • Estimating cube roots and cube roots.
  • Learning the process of moving nearer to the required number.
Home Revise
Reach Us

7th floor,Odyssey IT Park, Road Number- 9, Near Old Passport Office, Wagale Estate,
Thane (W) – 400604

Contact Us

telephone +91 80809 72972

mail customercare@homerevise.co.in

CBSE Board
  • 12 CBSE Board
  • 11 CBSE Board
  • 10 CBSE Board
  • 09 CBSE Board
  • 08 CBSE Board
  • 07 CBSE Board
  • 06 CBSE Board
  • 05 CBSE Board
  • 04 CBSE Board
  • 03 CBSE Board
  • 02 CBSE Board
  • 01 CBSE Board
ICSE Board
  • 10 ICSE Board
  • 09 ICSE Board
Maharashtra Board
Science
  • 12 Science Maharashtra Board
  • 11 Science Maharashtra Board
Commerce
  • 12 Commerce Maharashtra Board
  • 11 Commerce Maharashtra Board
  • 10 Maharashtra Board
  • 09 Maharashtra Board
  • 08 Maharashtra Board
  • 07 Maharashtra Board
  • 06 Maharashtra Board
  • 05 Maharashtra Board
  • 04 Maharashtra Board
  • 03 Maharashtra Board
  • 02 Maharashtra Board
  • 01 Maharashtra Board
Submit Form
  • Home Revise
  • twitter
  • youtube
  • instagram
© 2021 – All Rights Reserved. Home Revise